题目:给定一个正整数 N,试求有多少组连续正整数满足所有数字之和为 N?
示例 1:
输入: 5输出: 2
解释: 5 = 5 = 2 + 3,共有两组连续整数([5],[2,3])求和后为 5。
示例 2:
输入: 9输出: 3
解释: 9 = 9 = 4 + 5 = 2 + 3 + 4
示例 3:输入: 15输出: 4
解释: 15 = 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5
说明: 1 <= N <= 10 ^ 9
/* N = (p+0)+(p+1)+(p+2)+...+(p+i-1) = p*i +i*(i-1)/2 ===> 2*N = (p*2+i-1)*i (p,i都是正整数) */ import "math"func consecutiveNumbersSum(N int) int { var sum = 0 dataChan := make(chan int, 10) outChan := make(chan byte, 10)go func() { defer close(dataChan) for i := 1; float64(i) <= math.Sqrt(float64(2*N)); i++ { if (2*N)%i == 0 { dataChan <- i } }}()go func() { for { if i, ok := <-dataChan; !ok { close(outChan) return } else { p := (2*N)/i - i - 1 if p >= 0 && (p&1 == 0) { // fmt.Println("offset,i", p/2, i) outChan <- 0 } } }}()for { if _, ok := <-outChan; ok { sum++ } else { break }}return sum}